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We study site percolation on the square lattice and show that, when augmented 
with histogram Monte Carlo simulations for large lattices, the cell-to-cell renor- 
malization group approach can be used to determine the critical probability 
accurately. Unlike the cell-to-site method and an alternate renormalization 
group approach proposed recently by Sahimi and Rassamdana, both of which 
rely on ab initio numerical inputs, the cell-to-cell scheme is free of prior 
knowledge and thus can be applied more widely. 
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1. INTRODUCTION 

The problem of percolation has been a subject of much contention in 
recent years. ~'2~ Percolation has been investigated using a variety of 
approaches, including series expansions, ~3~ Monte Carlo simulations, ~4-7~ 
position-space renormalization group analyses, r 9~ histogram Monte Carlo 
renormalization group studies, I~~ and conformal invariance analyses. 1~6~ 
In most of these investigations one invariably considers the evaluation of 
E(L,p) ,  the existence probability ~Hs~ that the system percolates, as a 
function of L, the linear dimension of the lattice, and p, the site (or bond) 
occupation probability. The existence probability has also been termed the 
crossing probability by Kesten ~t~ and the spanning probability by Ziff. 16~ In 
the limit of L ~ ~ ,  E(L ,p)  approaches a step function O(p-pc) ,  c21 where 
Pc is the critical probability. For the square lattice with free boundary 
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conditions, E(oo, pc) is given by a universal constant c%= 1/2 for both 
bond and site percolation. (6) 

Consider the determination of Pc for site percolation on the square 
lattice. Although early attempts using series expansion t3) yielded the value 
Pc = 0.593 _ 0.02, the best value to date is that of Ziff (6), who used extensive 
Monte Carlo simulations to arrive at Pc = 0.592 7460 _ 0.000 0005. In addi- 
tion, the scaling behavior of pc has been found to assume the form 

p ~ ( L ) - p c ~ L  -~/" (1) 

under a cell-to-site renormalization group scheme, t8' 9) where v = 4/3 is the 
correlation exponent, and pc(L) is the fixed point solved from the transfor- 
mation equation 

pc(L) =E[L,  pc(L) ] (cell-to-site) (2) 

Similarly, under a cell-to-cell renormalization group scheme, the scaling 
behavior is found to be (6) 

pc(L) - p ~  ~ L -l  -I/~ (3) 

with pc(L) solved from 

E[ L -  1,p~(L)] =E[ L,p~(L)] (4} 

In addition, Ziff t6) has proposed an alternate approach based on the 
scaling relation (3) and the solution of the equation 

E[L, pc(L)] = ~  (5) 

where the value of c t=ec=0 .5  was used. Very recently, Sahimi and 
Rassamdana (SR) 117) showed that the usefulness of (5) can be extended to 
any value of 0 < e <  1. For this reason we shall refer to (5) in the context 
of general ct as the SR equation. In discussions in refs. 6 and 17, however, 
the primary purpose was the determination of the scaling behavior using 
data for relatively small values of L ~<7. It is also necessary in their 
analyses that specific values of the exponents are to be used. 

The purpose of this paper is twofold. First, we carry out a cell-to- 
cell renormalization group scheme proposed recently by one of us (~3) for 
large lattices with L~<512, a process made possible by using histogram 
Monte Carlo simulations. Second, we show that the cell-to-cell scheme is 
fundamentally more useful. Using the same Monte Carlo data, we show 
that the cell-to-cell approach determines Pc accurately, and that the deter- 
mination is independent of the value of the scaling exponent used in the 
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extrapolation. Thus, the cell-to-cell approach is more useful and capable of 
a wider range of applications. 

2. H I S T O G R A M  M O N T E  CARLO S I M U L A T I O N S  

The histogram Monte Carlo renormalization approach '11} to site per- 
colations has been described in recent papers, c ~3-,51 Here, for completeness 
and to make our presentation self-contained, we briefly sketch the main 
ideas. Consider site percolation on a lattice G of N sites, with each site 
either occupied with a probability p or empty with a probability 1 - p .  Two 
neighboring sites belong to a cluster if both are occupied. The occupied 
sites form subgraphs G' c G consisting of clusters of sites. Let v(G') be the 
number of occupied sites in G'. The probability of the appearance of a 
particular subgraph G' is 

n(G,,p)=pV~G'l(1 _p)N-oCG'~, O<~v(G')<~N (6) 

A cluster is percolating if it spans across opposite borders of G. A percolat- 
ing subgraph, denoted by G~r, is one whose largest cluster is percolating. 
The existence probability E(L, p) for site percolation on a square lattice G 
of size L • L with free boundaries is then the summation of the probability 
(6) over all percolating clusters, namely, 

N 

E(L,p)= ~ n(G~,er,p)= ~ pO(1-p)~-"M(v)  (7) 
G~r~--G t , ~ O  

where M(v) is the number of percolating subgraphs of G for a fixed v. This 
latter expression permits one to evaluate the existence probability E(L, p) 
numerically. 

We evaluate (7) by computing M(v) from histogram Monte Carlo simula- 
tions. One first chooses w distinct p values, and for each ofthep values generates 
NR subgraphs at random. For each of the wNR subgraphs thus generated, one 
counts v, the number of occupied sites, and checks whether the subgraph is 
percolating. In this way, one obtains Np~r(v), the number of percolating 
subgraphs, and Nnp (v), the number ofnonpercolating subgraphs, for each given 
v. The central idea of ref. 13 is to approximate M(v)/(~), the actual fraction of 
subgraphs that are percolating, by Nper(V)/[Nper(V ) Jr" Nnp(V)], the fraction of 
subgraphs that are percolating in the wNR subgraphs generated in the simula- 
tions. Then (7) becomes 

E(L,p).~ v=0 ~ P~ Np.~(V)+--N,p(v)J (8) 

This equation forms the basis of our numerical analysis. 
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3. T H R E E  D I F F E R E N T  C A L C U L A T I O N  S C H E M E S  A N D  
N U  M E R I C A L  A N A L Y S E S  

We use the cell-to-cell renormalization group transformation (~1' ~2) 

E(L/2,p') = E(L,p) (9) 

connecting two cells of linear sizes L and L/2. This transformation gives the 
renormalized occupation probability p '  as a function of p. The fixed point 
p,.(L) of (9), obtained by solving the equation 

E[L/2, pc(L)] = ElL, pc(L)] (cell-to-cell) (10) 

gives an estimate of the critical probability pc(L) for each value of L. 
We have carried out histogram Monte Carlo simulations as described 

in Section 2 with w ~ 4 0 0  and N R ~  105-106 for systems of sizes L =  
32, 64, 128, 256, and 512. The data are then applied to calculate pc(L) using 
the three calculations schemes described by (10), (2), and (5), namely the 
cell-to-cell, cell-to-site and SR approaches. Results obtained from (10) and 
(2) are listed in Table I, and results from (5) are listed in Table II for three 
different values of cc = 0.1,0.5, and 0.9. These results are further plotted in 
Figs. 1-3 by assuming the scaling behavior 

p~- -pc (L )~L  -c (11) 

for c=0.75,  1.00, and 1.75. The value o fpc=pc(oo)  is then extrapolated by 
least-square fits in each of the cases. Results are shown in Table III. 

Table III  show clearly that, among the three schemes, the cell-to-cell 
scheme leads to the most accurate determination of pc. More importantly, 
numbers in the first line of Table III  show that the determination of Pc 
using the cell-to-cell scheme is insensitive to the value of the scaling power 
c in the scaling relation (11 ). This is due to the relatively large values of L 

Table I. Values of pc(L) Under the Cell-to- 
Cell and Cell-to-Site Schemes ~ 

L Cell-to-cell Cell-to-site 

32 0.59287• 0.60257• 
64 0.59288• 0.59845• 

128 0.59273• 0.59607• 
256 0.59291 • 0.00024 0.59476 • 
512 0.59283 • 0.00014 0.59397• 

Numbers for cell-to-cell are solved from (I0) and cell- 
to-site from (2). 
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Table II. Values of p=(L) Under the SR Scheme Solved f rom (5) 

L ==0.1 ==0.5 ==0.9 

32 0.54217 • 0.00019 0.59264 • 0.00017 0.64138 • 0.00017 
64 0.56263 • 0.00010 0.59273 • 0.00007 0.62215 • 0.00008 

128 0.57484• 0.59273• 0.61040• 
256 0.58219• 0.59280• 0.60336• 
512 0.58648• 0.59280• 0.59910• 

used in the extrapolation. In contrast, numbers in the second line from the 
cell-to-site scheme indicate that it works  well only when one takes 
c = 1/v = 0.75, and the last three lines indicate that the SR scheme works  
well only when ~ is taken to assume the critical value ~c = 0.5. Thus, both 
of the latter approaches rely on some  form of  ab initio input. 

These situations are also illustrated in Figs. 1-3. In Fig. 1, where one 
takes c = 1/v = 0.75, it is seen that all three schemes work almost  equally 
well, and in Figs. 2 and 3, where c = 1.0 and 1.75, respectively, it is seen 
that only the cell-to-cell scheme and the SR scheme with the special input 
value of ~ = 0.5 yield good results. 
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Fig. 1. Plot of pc(L) as a function of L-~ Data points are those obtained using the cell-to- 
cell scheme (x ) ,  the cell-to-site scheme (+ ) ,  and the SR scheme (A,  ~=0.5; V,  ==0.1; 
O, ~ = 0.9). The star (*) indicates the value Pc = 0.592746 determined by Ziff. 16) Straight lines 
represent least square fits, and intersections of the straight lines with the y axis give the values 
of pc listed in Table III. 
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Fig. 2. 
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Plot o fpc(L)  as a function of  L -I~176 Data  points and notat ions  are the same as those 
in Fig. 1. 
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Fig. 3. Plot of  pc(L) as a function of  L -1"75. Data  points and notat ions  are the same as those 
in Fig. 1. 
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Table Ill. The Critical Probability Pc Extrapolated from Data of T a b l e s  I 
and U by Assuming the Scaling Relation L-C 

c 0.75 1.00 1.75 

Cell-to-cell  0.59282 + 0.00006 0.59283 _ 0.00005 0.59283 _ 0.00004 
Cell- to-si te 0.59267 _ 0.00006 0.59364 + 0.00016 0.5949 + 0.0005 

SR, a = 0.1 0.59279 _+ 0.00004 0.58772 -I- 0.00115 0.5814 4- 0.0030 

SR, 0t = 0.5 0.59283 4- 0.00002 0.59281 4- 0.00002 0.59278 4- 0.00002 
SR, ~ t=0 .9  0 .593224-0 .00014  0 .598074-0 .00120  0.6041 4-0.0030 

4. CONCLUSION AND DISCUSSION 

We have considered the site percolation problem on the square lattice 
using the cell-to-cell renormalization group schemes, as well as an alternate 
scheme proposed by Ziff and extended recently by Sahimi and Rassamdana 
(SR). The transformation relation determing pc(L) is solved in each case 
using data from histogram Monte Carlo simulations for cells of size L x L, 
with L = 2 ~, l = 5, 6 ..... 9. The results are then used to extrapolate the criti- 
cal probability Pc. Our results show that all three schemes can be used 
to determine Pc with almost the same degree of accuracy. However, the 
cell-to-site scheme makes use of the prior knowledge of the exponent 
-1/v = - 3 / 4  of the scaling relation, and the SR scheme, while of a lesser 
dependence on the exponent used, requires the use of the universal con- 
stant 0Cc= 1/2 in the determining equation. The cell-to-cell scheme, in 
contrast, does not require any ab initio input. 

Finally, we remark that, being insensitive to the scaling power used in 
the extrapolation of Pc, the present cell-to-cell scheme, which works well 
for systems with relatively large L, does not settle a recent controversy on 
the precise value of the scaling power. (~s' 19) Instead, the present scheme's 
usefulness rests on precisely this insensitivity so that it can be applied to 
other systems when the scaling power is not known. 
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